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* Motivation
- The Map of Physics
- Conservation Laws are Fundamental
- Shut up and Calculatel
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CONSERVATION LAWS
ARE FUNDAMENTAL

« A conservation law is a statement that a particular
measurable property of an isolated physical system will
not change as the system evolves in time




CONSERVATION LAWS
ARE FUNDAMENTAL

 Classical mechanics relies on the conservation of three
quantities:

* Linear momentum —
« Angular momentum —
« Energy —
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CALCULATE!
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STATEMENT OF THE
PROBLEM




OUTLINE

« Statement of the Problem
- Different formulations of Classical Mechanics
- Noether’'s Theorem
- Dissipation
- Where did the quantum friction go<¢
- The Arrow of Time
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THREE DIFFERENT
FORMULATIONS OF
CLASSICAL MECHANICS




« Newtonian Mechanics:
- Standard *high school
physics’
- Coincides with discovery of
calculus
- Calculations get tedious fast

4 v=at+vy [l

r =rg + vgt + %at2 2]

r=rg+ 1; (v+wvo)t [3]

vi+2a-(r—ry) [4]
Sirlsaac Newton (1642-1726)

r=rg+vt— -at’ [5]




Lagrangian Mechanics:
- Much more elegant
- Works for all coordinates!
- Exploits symmetries

« Joseph-Louis Lagrange (1736-1813)
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« Hamiltonian Mechanics:

n - The "Hamiltonian" is the fotal
e energy
A - Is the only form of mechanics

that we know how to
»  William Rowan Hamilton (1805-1865) quantize
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« Hamiltonian Mechanics:

n - The "Hamiltonian™ is the total
g energy
A - Is the only form of mechanics

that we know how to
»  William Rowan Hamilton (1805-1865) quantize




Conservation
of energy!

*  William Rowan Hamilton (1805-1865)

=1
dL
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 Hamiltonian Mechanics:
- The “Hamiltonian” is the total
energy
- Is the only form of mechanics
that we know how 1o
quantize




NOETHER'S THEOREM
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DISSIPATION
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 Dissipative systems do not obey conservation laws
« Newtonian mechanics can deal with friction
« Lagrangian and Hamiltonian mechanics cannot

ey |
"
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 Dissipative systems do not obey conservation laws
« Newtonian mechanics can deal with friction
« Lagrangian and Hamiltonian mechanics cannot
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« But guantum mechanics is derived explicitly from
Hamiltonian mechanics...
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So are quantum systems truly conservative and
therefore time reversiblee¢

*OR




So are quantum systems truly conservative and
therefore time reversiblee¢

*OR

We don't know how to incorporate dissipation into
gquantum systemse




WHERE

D

D THE QUANTUM
FRICTION GO¥¢

« Statement of the problem: the foundations of quantum
mechanics are explicitly time reversible, but this is only
true for isolated conservative systems!




WHERE DID THE QUANTUM
FRICTION GO¥¢

« Statement of the problem: the foundations of quantum
mechanics are explicitly time reversible, but this is only
true for isolated conservative systems!

 We live in a world dominated by friction and irreversible
dissipative processes




WHERE DID THE QUANTUM
FRICTION GO¥¢

« Statement of the problem: the foundations of quantum
mechanics are explicitly time reversible, but this is only
true for isolated conservative systems!

 We live in a world dominated by friction and irreversible
dissipative processes
* In thermodynamics, this is known as...




Dark Energy

Accelerated Expansion

Afterglow Light
Pattern  Dask Ages Deovelopmant ot

380,000 yrs, Galaxies, Planets, atc.

181 Stars
about 400 million yrs.

Big Bang Expanslon |
13.7 billion years




-

METHODOLOGY




OUTLINE

 Methodology
- Expanding the Mathematical Toolkit
- ldentifying experimental scenarios that are
infrinsically dissipative
- Instead on relying on computer simulations, focus
on analytic approaches
« Striving for conceptual clarity!




STATISTICAL MECRANICS
AND ITS APPLICATIENS

miE O larXiv.org
Physics of Fractal

Operators -
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OUTLINE

« Results (so far)
- Nonconservative Lagrangian Mechanics
- Fractional Calculus and Memory
- Perturbation Expansion
. Small deviations from classical frajectories
- Is space-time... afractale
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FRACTIONAL CALCULUS




« A fractional derivative is:
« an extension of regular
derivatives from whole numb
values to any real number

2.2.4 The Fractional Derivative

vadefine

function f(#) is computed in the following way:

1. Choose desired order of differentiation ¢
2. Findm:m—-1<a<m
3. Integrate f(¢) to m — o order

tiate the result m times

Define
tional

to be an integer




SYSTEMS WITH MEMORY




slication to Linear Friction

In compliance with Riewe’s argument, let a 2 and consider the La-
grangian

L= %l!l(ﬂ\)f -

dt
Here the first term denotes the kinetic energy of the particle while the second
term corresponds to a ‘linear friction energy.” The potential in the third term
remains unspecified. Inserting this Lagrangian into (3.31)) gives
= ‘IT\, +sD}*[CsD;}?q) + »D}[md]
av -
= —— +Cq+mg
(Ir/
where we obtained the second term from the composition rule of fractional
derivatives and the third term from identifving the differentiation operator
to be that of a first derivative with respect to time. If we now let V (z) =
, the resulting equation of motion is

. 2
mg+Cqg—mw-qg=10
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In compliance with Riewe’s argument, let a
grangian

L= ém(”—]—!)j -

dt
Here the first term denotes the kinetic energy of the particle while the second
term corresponds to a ‘linear friction energy.” The potential in the third term
remains unspecified. Inserting this Lagrangian into (3.31)) gives

,A';,I),I ‘211.: =+ ,l,[)‘,] [Hl il

V. e "
— +Cq+mg
dq
where we obtained the second term from the composition rule of fractional
derivatives and the third term from identifving the differentiation operator
to be that of a first derivative with respect to time. If we now let V (z) =
, the resulting equation of motj

Light damping




PERTURBATION

« Widely used approach to find how
much quantities deviate from a
simple case

e |In this context, deviation from

'straight line’ trajectories

EXPANSION







FRACTAL GEOMETIRY

« A fractalis any geometric structure that
exhibits a self-similar relation







7:I'_\'pc of
fractal

Camtor Sel

Geometrical shape

Menger sponge

The 4 dimension
random cantor
set analogue of
Menger sponge

Sierpinski gasket

.\]cugcr—

Hausdorfl | Corresponding | Embedding
dimension

dimension

Urysohn

random
dimension

Hausdorff
dimension

In 2/in3 = @ =0.61803398

d.630929753

An artist impression of €'

space-fene

e 0D
In 3Mn2 =

1.384962501

l
— = 1.618033989
¢

3 -+ 0 —
2.61803398

(/_'“ = 4-r¢’ =

4.236068 4.23606797

Corresponding
“uclidean shape

Square

,l'v[’{'l cube




RELEVANCE




« Relevance
- We can formulate the foundations of guantum
mechanics in a completely different mathematical
language
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« Relevance
- We can formulate the foundations of guantum
mechanics in a completely different mathematical
language
- Motivate research programs on fundamental
physics beyond the current paradigm of
supersymmetry and string theory




"

« Relevance

- We can formulate the foundations of guantum
mechanics in a completely different mathematical
language

- Motivate research programs on fundamental
physics beyond the current paradigm of
supersymmetry and string theory

- Apply theoretical framework to experimental
settings




« Relevance

- We can formulate the foundations of guantum
mechanics in a completely different mathematical
language

- Motivate research programs on fundamental
physics beyond the current paradigm of
supersymmetry and string theory

- Apply theoretical framework to experimental
settings

- Shut up and calculatel
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SUMMARY
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FUTURE WORK




OUTLINE

« Future Work
- Test new paradigm against experimental data:
« Brownian motion
« Bouncing Droplets
. Many Body Localization




OUTLINE

» Future Work

- Test new paradigm against experimental data:
« Brownian motion
. Bouncing Droplets
. Many Body Localization

- Develop numerical and computational models

- How will my models fare in comparison to modern

canonical theory, namely Quantum Field Theory?
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