

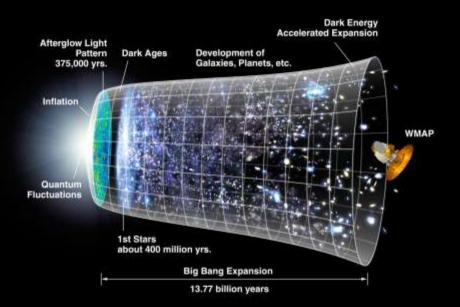
Memory and the Arrow of Time in Foundations of Quantum Mechanics

Sebastian Gil

Program: Bsc. in Physics and Astronomy

Supervisor: Dr. Ludovic van Waerbeke

FORECAST



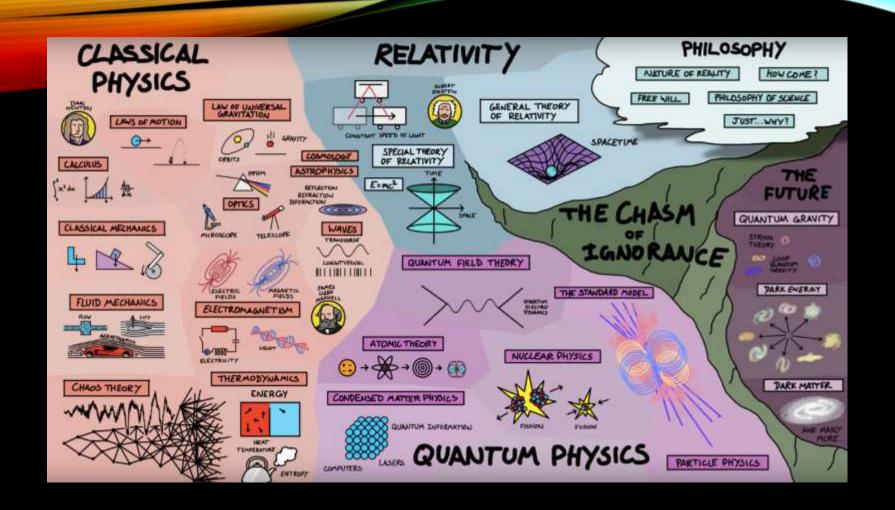
OUTLINE

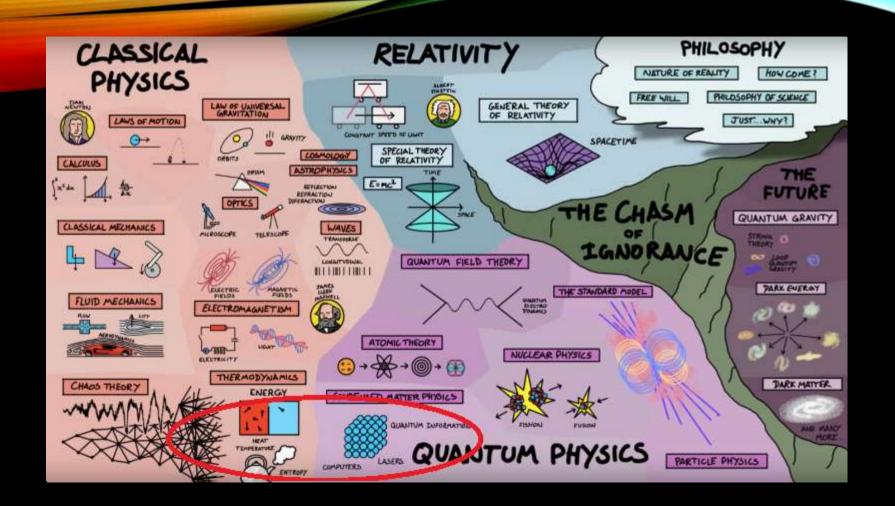
- Motivation
- Statement of the Problem
- Methodology
- Results and Relevance
- Summary
- Future Work

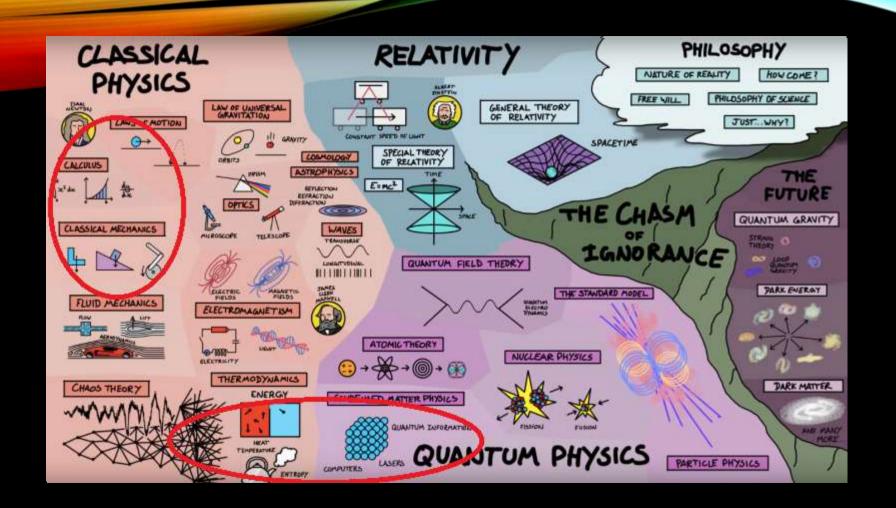
MOTIVATION

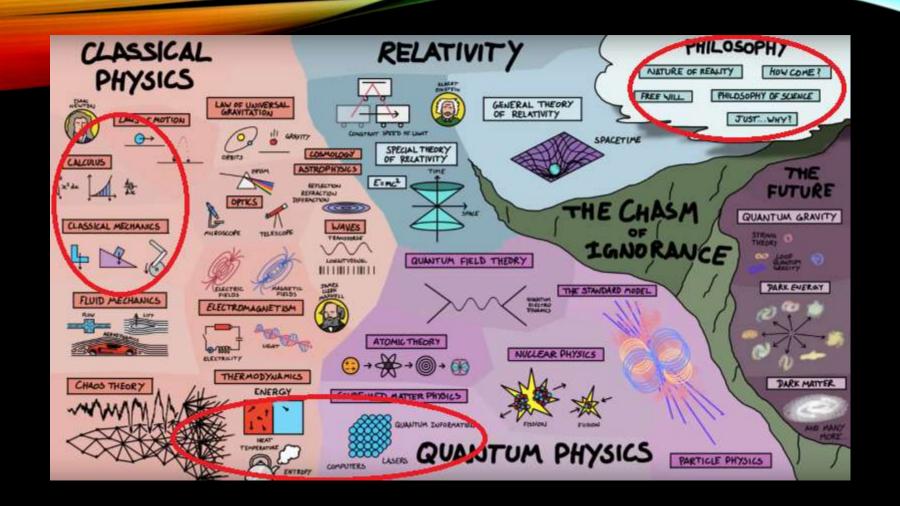
OUTLINE

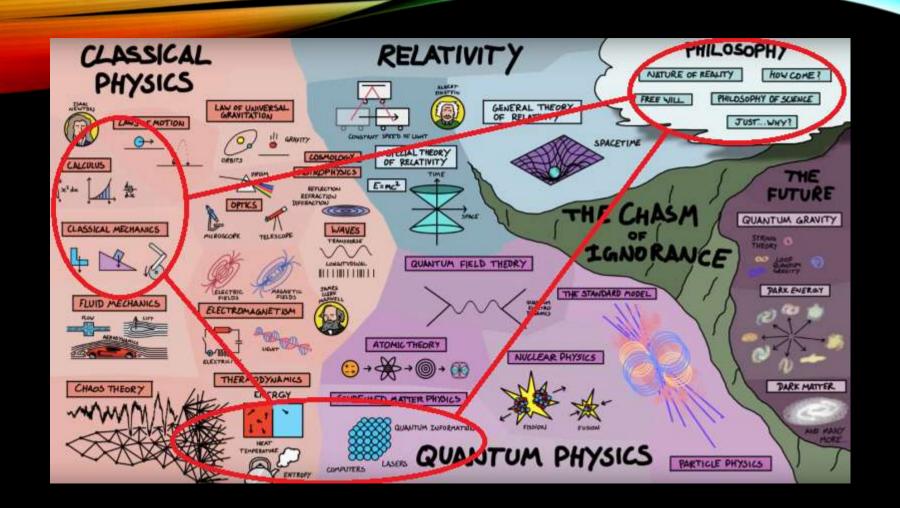
- Motivation
 - The Map of Physics
 - Conservation Laws are Fundamental
 - Shut up and Calculate!





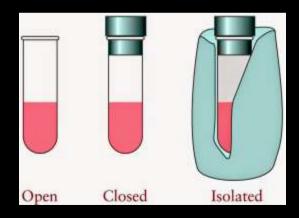


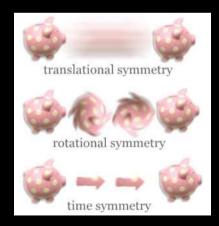




CONSERVATION LAWS ARE FUNDAMENTAL

 A conservation law is a statement that a particular measurable property of an **isolated** physical system will not change as the system evolves in time

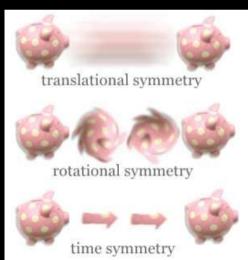




CONSERVATION LAWS ARE FUNDAMENTAL

 Classical mechanics relies on the conservation of three quantities:

- Linear momentum →
- Angular momentum →
- Energy →



COME AWAY FROM THE WINDOW! YOU DON'T WANT TO BE A CHILD LEFT BEHIND, DO YOU?

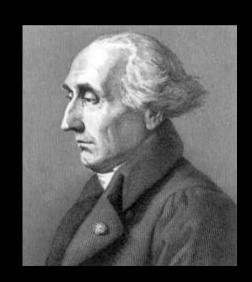
SHUT UP AND CALCULATE!

STATEMENT OF THE PROBLEM

OUTLINE

- Statement of the Problem
 - Different formulations of Classical Mechanics
 - Noether's Theorem
 - Dissipation
 - Where did the quantum friction go?
 - The Arrow of Time

THREE DIFFERENT FORMULATIONS OF CLASSICAL MECHANICS



Sir Isaac Newton (1642-1726)

- Newtonian Mechanics:
 - Standard 'high school physics'
 - Coincides with discovery of calculus
 - Calculations get tedious fast

$$egin{aligned} F_{m} &= m{m}m{a}; \quad m{a} = rac{m{d}^{2}m{x}}{m{d}t^{2}} \ F_{m} &= rac{m{m}}{m{g}_{c}}rac{m{d}^{2}m{x}}{m{d}t^{2}} \end{aligned}$$

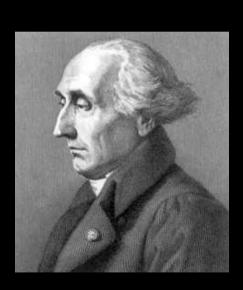
$$\mathbf{v} = \mathbf{a}t + \mathbf{v}_0 \quad [1]$$

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2 \quad [2]$$

$$\mathbf{r} = \mathbf{r}_0 + \frac{1}{2} (\mathbf{v} + \mathbf{v}_0) t \quad [3]$$

$$\mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a} \cdot (\mathbf{r} - \mathbf{r}_0) \quad [4]$$

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2 \quad [5]$$



$$\frac{\partial L}{\partial q} = \frac{\partial}{\partial q}(a\dot{q}^2 + bq^4) = 0 + \frac{\partial}{\partial q}bq^4 = 4bq^3$$

$$\frac{\partial L}{\partial \dot{q}} = \frac{\partial}{\partial \dot{q}}(a\dot{q}^2 + bq^4) = \frac{\partial}{\partial \dot{q}}a\dot{q}^2 + 0 = 2a\dot{q}$$

$$\frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{q}} = \frac{\partial}{\partial t} 2a\dot{q} = 2a\ddot{q}$$

$$\frac{\partial L}{\partial q} = \frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{q}} \to 4bq^3 = 2a\ddot{q} \to \ddot{q} = \frac{2b}{a}q^3$$

- Lagrangian Mechanics:
 - Much more elegant
 - Works for all coordinates!
 - Exploits symmetries

Joseph-Louis Lagrange (1736-1813)

• William Rowan Hamilton (1805-1865)

$$\begin{split} \frac{\partial H}{\partial t} &= \sum_{i=1}^{n} \ddot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \dot{\vec{q}}_{i}} + \sum_{i=1}^{n} \dot{\vec{q}}_{i} \cdot \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\vec{q}}_{i}} \right) - \frac{\partial L}{\partial t} \\ &= \sum_{i=1}^{n} \ddot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \dot{\vec{q}}_{i}} + \sum_{i=1}^{n} \dot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \vec{q}_{i}} - \frac{\partial L}{\partial t} \\ &= \frac{\partial L}{\partial t} - \frac{\partial L}{\partial t} \\ &= 0 - 0 \\ &= 0 \end{split}$$

- Hamiltonian Mechanics:
 - The "Hamiltonian" is the total energy
 - Is the **only** form of mechanics that we know how to quantize

William Rowan Hamilton (1805-1865)

$$\frac{\partial H}{\partial t} = \sum_{i=1}^{n} \ddot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \dot{\vec{q}}_{i}} + \sum_{i=1}^{n} \dot{\vec{q}}_{i} \cdot \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\vec{q}}_{i}} \right) - \frac{\partial L}{\partial t}$$

$$= \sum_{i=1}^{n} \ddot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \dot{\vec{q}}_{i}} + \sum_{i=1}^{n} \dot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \dot{\vec{q}}_{i}} - \frac{\partial L}{\partial t}$$

$$= \frac{\partial L}{\partial t} - \frac{\partial L}{\partial t}$$

$$= \frac{\partial -0}{\partial t}$$

$$= 0$$

- Hamiltonian Mechanics:
 - The "Hamiltonian" is the total energy
 - Is the **only** form of mechanics that we know how to quantize

Conservation of energy!

William Rowan Hamilton (1805-1865)

$$\begin{aligned} \frac{\partial H}{\partial t} &= \sum_{i=1}^{n} \ddot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \dot{\vec{q}}_{i}} + \sum_{i=1}^{n} \dot{\vec{q}}_{i} \cdot \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\vec{q}}_{i}} \right) - \frac{\partial L}{\partial t} \\ &= \sum_{i=1}^{n} \ddot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \dot{\vec{q}}_{i}} + \sum_{i=1}^{n} \dot{\vec{q}}_{i} \cdot \frac{\partial L}{\partial \ddot{\vec{q}}_{i}} - \frac{\partial L}{\partial t} \\ &= \frac{\partial L}{\partial t} - \frac{\partial L}{\partial t} \\ &= 0 - 0 \end{aligned}$$

- Hamiltonian Mechanics:
 - The "Hamiltonian" is the total energy
 - Is the **only** form of mechanics that we know how to quantize

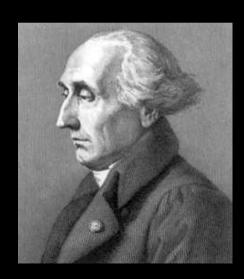
NOETHER'S THEOREM

$$\begin{split} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{q}}} \frac{\partial \phi}{\partial \mathbf{q}} \dot{\mathbf{q}} T \right) &= \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{\mathbf{q}}} \right) \frac{\partial \phi}{\partial \mathbf{q}} \dot{\mathbf{q}} T + \frac{\partial L}{\partial \dot{\mathbf{q}}} \left(\frac{d}{dt} \frac{\partial \phi}{\partial \mathbf{q}} \right) \dot{\mathbf{q}} T + \frac{\partial L}{\partial \dot{\mathbf{q}}} \frac{\partial \phi}{\partial \mathbf{q}} \ddot{\mathbf{q}} T \\ &= \frac{\partial L}{\partial \mathbf{q}} \frac{\partial \phi}{\partial \mathbf{q}} \dot{\mathbf{q}} T + \frac{\partial L}{\partial \dot{\mathbf{q}}} \left(\frac{\partial^2 \phi}{(\partial \mathbf{q})^2} \dot{\mathbf{q}} \right) \dot{\mathbf{q}} T + \frac{\partial L}{\partial \dot{\mathbf{q}}} \frac{\partial \phi}{\partial \mathbf{q}} \ddot{\mathbf{q}} T. \end{split}$$

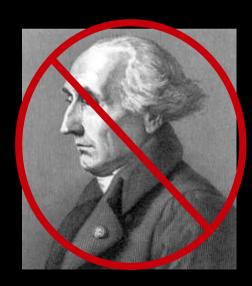
Symmetries ← Gonservation Laws!

DISSIPATION

- Dissipative systems do not obey conservation laws
 - Newtonian mechanics can deal with friction
 - Lagrangian and Hamiltonian mechanics cannot



- Dissipative systems do not obey conservation laws
 - Newtonian mechanics can deal with friction
 - Lagrangian and Hamiltonian mechanics cannot



• But quantum mechanics is derived explicitly from Hamiltonian mechanics...

 So are quantum systems truly conservative and therefore time reversible?

•

•OR

 So are quantum systems truly conservative and therefore time reversible?

• 🔾 F

 We don't know how to incorporate dissipation into quantum systems?

WHERE DID THE QUANTUM FRICTION GO?

 Statement of the problem: the foundations of quantum mechanics are explicitly time reversible, but this is only true for isolated conservative systems!

WHERE DID THE QUANTUM FRICTION GO?

- Statement of the problem: the foundations of quantum mechanics are explicitly time reversible, but this is only true for isolated conservative systems!
- We live in a world dominated by friction and irreversible dissipative processes

WHERE DID THE QUANTUM FRICTION GO?

- Statement of the problem: the foundations of quantum mechanics are explicitly time reversible, but this is only true for isolated conservative systems!
- We live in a world dominated by friction and irreversible dissipative processes
- In thermodynamics, this is known as...

Afterglow Light Pattern 380,000 yrs. Dark Ages Galaxies, Planeta, etc. Ouantum Fluctuations 1st Stare about 400 million yrs. Big Bang Expansion 13.7 billion years

THE ARROW OF TIME

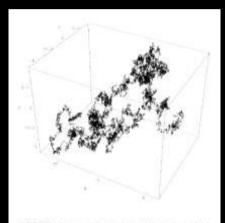
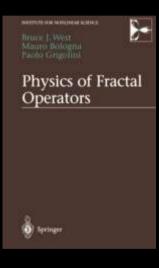


FIG. 4. The Brownian motion of a particle can be modeled in terms of a random walls. The curve depicted is a threedimensional representation of the particle's path. [15]

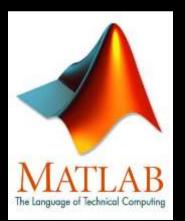
METHODOLOGY

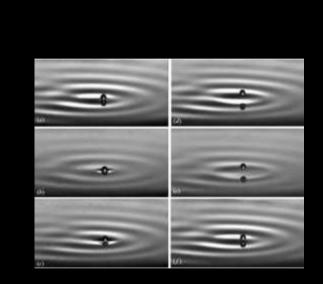
OUTLINE

- Methodology
 - Expanding the Mathematical Toolkit
 - Identifying experimental scenarios that are intrinsically dissipative
 - Instead on relying on computer simulations, focus on analytic approaches
 - Striving for conceptual clarity!



arXiv.org





RESULTS

OUTLINE

- Results (so far)
 - Nonconservative Lagrangian Mechanics
 - Fractional Calculus and Memory
 - Perturbation Expansion
 - Small deviations from classical trajectories
 - Is space-time... a fractal?

NONCONSERVATIVE LAGRANGIAN A Variational A Variational A Variational A MECHANICS

Nonconservative Lagrangian
Mechanics: Derivation of a Variational
Principle for Linear Friction

A Fractional Calculus Approach

by

Sebastián Gil

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

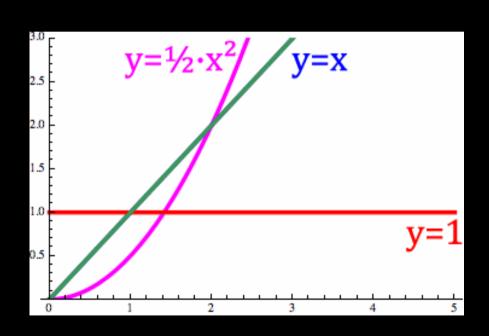
BACHELLOR OF SCIENCE

in

Faculty of Science

(Combined Honours in Physics and Astronomy)

FRACTIONAL CALCULUS



- A fractional derivative is:
 - an extension of regular derivatives from whole numb values to any real number

2.2.4 The Fractional Derivative

The Riemann-Liouville definition of the fractional derivative follows naturally from the fractional integral. Choosing an arbitrary order of integration $\alpha>0$, we first need to find the smallest integer m exceeding α . That is to say, we need to choose m such that

$$m - 1 < \alpha < m$$
. (2.23)

Then, the fractional derivative is defined as

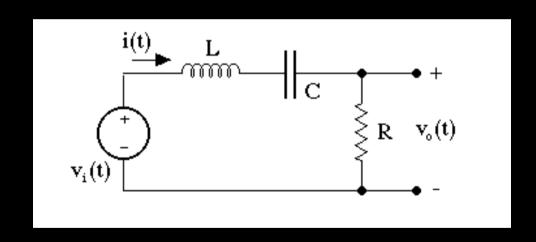
$$_aD_t^{\alpha}[f(t)] = \frac{d^m}{dt^m} \left[\frac{1}{\Gamma(m-a)} \int_a^t f(\tau)(t-\tau)^{m-\alpha-1} d\tau \right]$$
(2.24)

Defined this way, we ensure that the Gamma function does not become undefined. To clarify, the fractional derivative of an appropriately chosen function f(t) is computed in the following way:

- Choose desired order of differentiation α
- 2. Find $m: m-1 < \alpha < m$
- 3. Integrate f(t) to $m \alpha$ order
- 4. Differentiate the result m times

Defined this way, it can easily be verified that the Riemann-Liouville fractional derivative reduces back to the standard derivative when α is chosen to be an integer.

SYSTEMS WITH MEMORY



3.5 Application to Linear Friction

In compliance with Riewe's argument, let $\alpha=1/2$ and consider the Lagrangian

$$L = \frac{1}{2}m\left(\frac{dq}{dt}\right)^2 + \frac{C}{2}[_bD_t^{1/2}q]^2 - V(q). \tag{3.32}$$

Here the first term denotes the kinetic energy of the particle while the second term corresponds to a 'linear friction energy.' The potential in the third term remains unspecified. Inserting this Lagrangian into (3.31) gives

$$0 = -\frac{\partial V}{\partial q} + {}_{b}D_{t}^{1/2}[C_{b}D_{t}^{1/2}q] + {}_{b}D_{t}^{1}[m\dot{q}] \qquad (3.33)$$
$$= -\frac{\partial V}{\partial q} + C\dot{q} + m\ddot{q} \qquad (3.34)$$

where we obtained the second term from the composition rule of fractional derivatives and the third term from identifying the differentiation operator to be that of a first derivative with respect to time. If we now let $V(x) = \frac{1}{2}m\omega^2x^2$, the resulting equation of motion is

$$m\ddot{q} + C\dot{q} - m\omega^2 q = 0 \tag{3.35}$$

3.5 Application to Linear Friction

In compliance with Riewe's argument, let $\alpha=1/2$ and consider the Lagrangian

$$L = \frac{1}{2}m\left(\frac{dq}{dt}\right)^2 + \frac{C}{2}[_bD_t^{1/2}q]^2 - V(q). \tag{3.32}$$

Here the first term denotes the kinetic energy of the particle while the second term corresponds to a 'linear friction energy.' The potential in the third term remains unspecified. Inserting this Lagrangian into (3.31) gives

$$0 = -\frac{\partial V}{\partial q} + {}_{b}D_{t}^{1/2}[C_{b}D_{t}^{1/2}q] + {}_{b}D_{t}^{1}[m\dot{q}]$$
(3.33)

$$= -\frac{\partial V}{\partial q} + C\dot{q} + m\ddot{q} \qquad (3.34)$$

where we obtained the second term from the composition rule of fractional derivatives and the third term from identifying the differentiation operator to be that of a first derivative with respect to time. If we now let $V(x) = \frac{1}{2}m\omega^2x^2$, the resulting equation of motion is

$$m\ddot{q} + C\dot{q} - m\omega^2 q = 0 \tag{3.35}$$

3.5 Application to Linear Friction

In compliance with Riewe's argument, let $\alpha=1/2$ and consider the Lagrangian

$$L = \frac{1}{2}m\left(\frac{dq}{dt}\right)^2 + \frac{C}{2}[_bD_t^{1/2}q]^2 - V(q). \tag{3.32}$$

Here the first term denotes the kinetic energy of the particle while the second term corresponds to a 'linear friction energy.' The potential in the third term remains unspecified. Inserting this Lagrangian into (3.31) gives

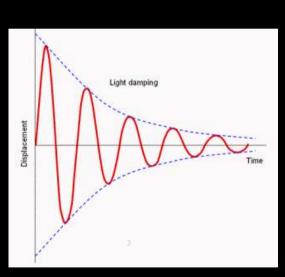
$$0 = -\frac{\partial V}{\partial q} + {}_{b}D_{t}^{1/2}[C_{b}D_{t}^{1/2}q] + {}_{b}D_{t}^{1}[m\dot{q}]$$

$$\frac{\partial V}{\partial V}$$
(3.33)

$$= -\frac{\partial V}{\partial q} + C\dot{q} + m\ddot{q} \tag{3.34}$$

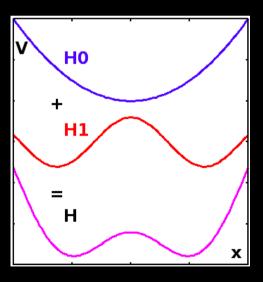
where we obtained the second term from the composition rule of fractional derivatives and the third term from identifying the differentiation operator to be that of a first derivative with respect to time. If we now let $V(x) = \frac{1}{2}m\omega^2x^2$, the resulting equation of motion is

$$m\ddot{q} + C\dot{q} - m\omega^2 q = 0 \tag{3.35}$$



PERTURBATION EXPANSION

- Widely used approach to find how much quantities deviate from a simple case
- In this context, deviation from 'straight line' trajectories



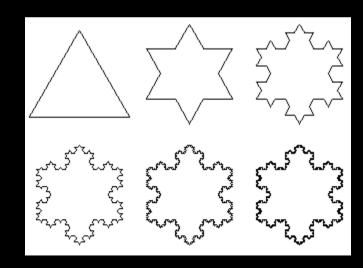
Such of al (Freshood Estayon and Breaker, 1985) then that I we wish to friendly approved all a to a contract minister of the finitional decay the Here (1) - Type) at very to come forther physician that \$100 first and an american O the man street to be for my . Tipes or compil this the combache PINO THE continued of the stoke the want to extend for the

```
ca the Affordion is will consider.
       But were world we do the perfectively.
       opening?
       the wat
   How shirt
      Z (x) (x) (x) to to position
        we arresty train this
          ( ) FIRST . act
           and that it had a colonial
       is enjoying in well have specifing the
  D_{t}^{\text{pre}}(y|n) = \sum_{k=0}^{\infty} \binom{k}{k!} \frac{c_{0}^{\text{red}} c_{k}^{\text{red}}}{c_{0}^{\text{red}}}
```

```
2 De Trell - Fre Bustim & State pour
(#) of the - of to the of the
Do - Light Light Die a street proly
  De Se the man man
 -0,[多器+1,]
 DI & contraction and and a Digital
     on layer pass dup court
是自門(例, 成門是是在6門
 " TON ( PART - (# ( CAND))
             · 2 (4) * 1000 x 1000
```

FRACTAL GEOMETRY

 A fractal is any geometric structure that exhibits a self-similar relation



MINISTERS HAVE MAINTAINED WANTED

Bruce J. West Mauro Bologna Paolo Grigolini

Physics of Fractal Operators

Type of fractal	Geometrical shape	Menger- Urysohn dimension	Hausdorff dimension	Corresponding random Hausdorff dimension	Embedding dimension	Corresponding Euclidean shape
Cantor Set		0	ln 2/ln3 = 0.630929753	φ = 0.61803398	1	Line
Sierpinski gasket	AA.	2	In 3/In2 = 1.584962501	$\frac{1}{\phi} = 1.618033989$	2	Square
Menger sponge	A CONTRACTOR OF THE PARTY OF TH	3	$D_{MS} = ln20/ln3 = 2.7268$	$2 + \phi = 2.61803398$	3	Cube
The 4 dimension random cantor set analogue of Menger sponge	An artist impression of $\boldsymbol{\mathcal{E}}^{(\cdot)}$ space-time	4	$d_c^{(4)} = 4.236068$	$4 + \phi^3 = 4.23606797$	5	Hyper cube

RELEVANCE

- Relevance
 - We can formulate the foundations of quantum mechanics in a completely different mathematical language

Relevance

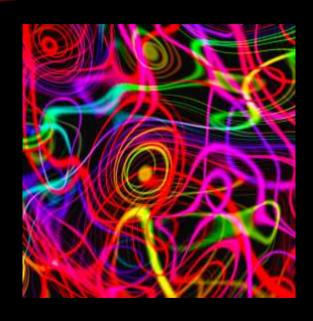
- We can formulate the foundations of quantum mechanics in a completely different mathematical language
- Motivate research programs on fundamental physics beyond the current paradigm of supersymmetry and string theory

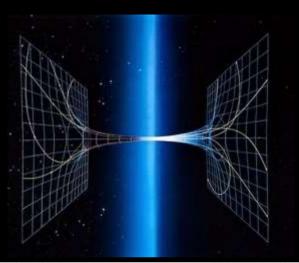
Relevance

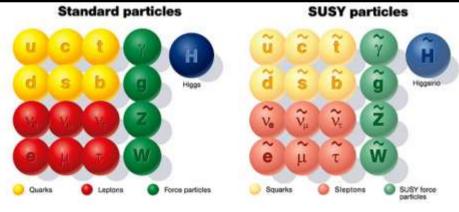
- We can formulate the foundations of quantum mechanics in a completely different mathematical language
- Motivate research programs on fundamental physics beyond the current paradigm of supersymmetry and string theory
- Apply theoretical framework to experimental settings

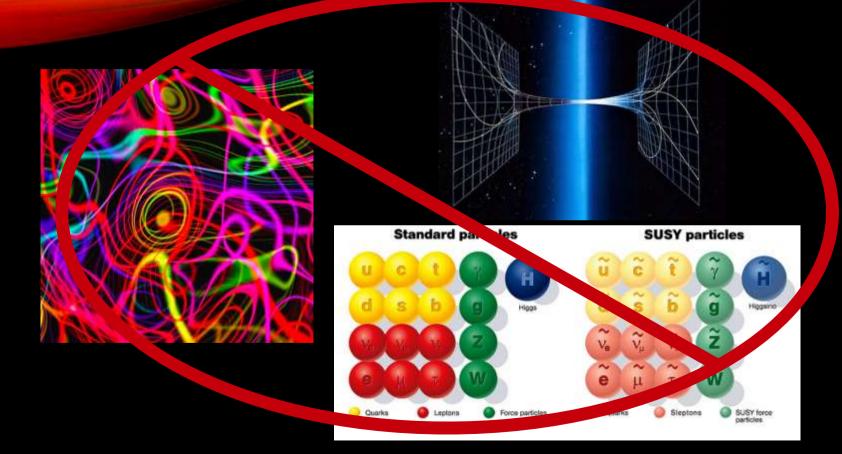
Relevance

- We can formulate the foundations of quantum mechanics in a completely different mathematical language
- Motivate research programs on fundamental physics beyond the current paradigm of supersymmetry and string theory
- Apply theoretical framework to experimental settings
- Shut up and calculate!









SUMMARY

FUTURE WORK

OUTLINE

- Future Work
 - Test new paradigm against experimental data:
 - Brownian motion
 - Bouncing Droplets
 - Many Body Localization

OUTLINE

- Future Work
 - Test new paradigm against experimental data:
 - Brownian motion
 - Bouncing Droplets
 - Many Body Localization
 - Develop numerical and computational models
 - How will my models fare in comparison to modern canonical theory, namely Quantum Field Theory?

REFERENCES

- Walliman, Dominic. The Map of Physics. Youtube Nov, 2016
- Bauer, P.S. Dissipative Dynamical Systems. Proceedings of the National Academy of Sciences. 1931
- Caldeira, Leggett. Path integral approach to quantum brownian motion.
 Physica A: Statistical Mechanics and its Applications. 1983
- Dreisigmeyer, Young. Nonconservative Lagrangian Mechanics: a generalized function approach. Journal of Physics A. 2003
- Riewe, Fred. Nonconservative Lagrangian and Hamiltonian Mechanics. Phys Rev. E. Feb, 1996
- Oldham, Spanier. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press. 1974
- Taylor. Classical Mechanics. University Science Books. 2005
- Bologna, Grigolini, West. Physics of Fractal Operators. Springer. 2003

ACKNOWLEDGEMENTS